
Preface

The following is an excerpt from my thesis [Ass15, Chap. 6], slightly edited
to allow it to stand on its own as a separate document. It is provided as a
supplement to the woptic user’s guide for the user who wants the gory details
of Vα

uv(k) interpolation and how it compares to U (k) interpolation. It should
not be considered required reading if you just want to use the package.

Elias Assmann,
September 2015
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Woptic: optical conductivity with MLWF

The purpose of the woptic package [Ass+15; Wis12] is to calculate the optical
conductivity σαβ(Ω); its static limit, the dc conductivity σαβ(Ω → 0); and the
Seebeck coefficient or thermopower Sαβ of a periodic interacting electron system.
It is integrated rather tightly with Wien2k (to provide the single-particle states
and matrix elements between them) and Wannier90 (to provide a localized
basis); interaction effects beyond density-functional theory (dft) are included
via a local self-energy Σ(ω). The self-energy is assumed to be local under the
assumption that it comes from a dynamical mean-field theory (dmft) calculation,
but woptic is not tied to any specific dmft implementation.

The distinguishing features of woptic are an adaptive tetrahedral grid for
the Brillouin zone (bz) integration, and the use of the full momentum matrix
elements

Vα
ab(k) = 〈ψ ak| p̂α|ψ bk〉 (1)

in place of a Peierls approximation V(k) ≈ i∇k H(k) [Wis+12]. To avoid clutter,
we use natural units throughout, setting the electron’s mass and charge as well
as the reduced Planck constant to unity: me = e = h̄ = 1.

The design of the package is such that the management of the adaptive k-
mesh is well isolated from the integration routine and other parts of the code.
The k-mesh management code was not substantially changed in the course of
this dissertation, while the integration routine and various glue and support
codes were extended and to a large part rewritten with respect to the original
woptic package presented in [Wis12]. Therefore, we will focus on these parts
and refer to [Ass+15; Wis12] for a description of the adaptive k-mesh refinement.
A practical description of woptic is provided in the user’s guide.
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Woptic: optical conductivity with MLWF

Figure 1: Cubic perovskite crystal structure of SrVO
3
. The O

ligands form an octahedron (shown in red) around the V site,
leading to the t2g-eg splitting observed in Fig. 2.

1 Strontium vanadate, testbed material

In the following sections, strontium vanadate (SrVO
3
) will be used for all

numerical tests. This paramagnetic correlated metal has a cubic perovskite
structure, shown in Fig. 1. It is a well studied material, and is often used to
showcase new developments in the theory of strongly correlated materials.*

Fig. 2 shows the band structure and density of states of SrVO
3

as computed
with Wien2k using the Perdew-Burke-Ernzerhof (pbe) functional [pbe96]. The
three V-t2g-derived bands constitute the low-energy degrees of freedom. They
are separated by finite gaps everywhere in the bz from the O-p states below
and the V-eg states above.

For the purposes of testing woptic, we will use two different types of Wannier
projections for SrVO

3
:

p-3 A 3-band projection on the t2g bands is straightforward. Because the
t2g states hybridize with O-p states, the three V-centered orbitals of the
resulting “minimal model” for SrVO

3
also have a lot of weight at the O

sites [Rib+14].

p-14 A 14-band projection on the V-d and O-p bands is more delicate because
at the R-point, the V-eg bands become entangled with 3 Sr bands (as
seen in Fig. 2). In practice, as long as the R-point is not included in the
Wannierization k-mesh, this entanglement can be ignored. (For an isotropic

* To give a few examples, dmft calculations are presented in [Lie03; Nek+05; Pav+04; Sek+04;
Tar+13; Tom+12]; Wannier projections in [Kun+10; Pav+05; Rib+14; Sca+14].
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Figure 2: Bandstructure (left) and dos (right; in states per eV per unit cell) of SrVO
3
.

Energy (left scale) is in eV. The contributions are color-coded: red for O, blue for V,
green for Sr. On the left, the V-t2g bands are highlighted by thicker lines (i.e., the line
width is proportional to the V-t2g weight); on the right, the V-t2g contribution is shaded,
and the dotted line represents the total dos.

L× L× L mesh this is the case if L is odd.) Otherwise, disentanglement is
expedient to obtain good Wannier functions (wf). In any case, the resulting
orbitals are close to the atomic case, since all relevant states are explicitly
included in the Wannier projection (i.e. there is little hybridization with
any other bands) [Rib+14; Sca+14].

To judge the quality of the different projections, we can compare the re-
spective Wannier-interpolated band structures (Fig. 3). As described above,
the 8× 8× 8 projection without disentanglement (using the 14 lowest-energy
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Figure 3: Wannier-interpolated band
structures for SrVO

3
from different

projections:

— (purple) p-3,

— (red) p-14 without disentanglement
on 9× 9× 9 k-points,

— (black) the same on 8× 8× 8 k-points,

— (orange) p-14 with disentanglement;

compared to

◦ (circles) the Wien2k result.

Throughout most of the bz, all projec-
tions follow the dft bands closely, such
that only one of the lines is visible. The
discrepancies between the p-14 projec-
tions around R (i.e. the corner point of
the bz) are due to entangled Sr bands
(see text).

bands starting from 8 eV below the Fermi level) fails to reproduce the Wien2k
bands around the R-point. Using a 9× 9× 9 k-mesh instead, the bands are
reproduced faithfully. If an additional 3 bands are included for disentangle-
ment, the Wannier-interpolated bands follow the V character more closely, as
a comparison to Fig. 2 reveals. To do so, it must necessarily depart from the
Wien2k bands. This is an illustration of the general rule that the maximally
localized Wannier function (mlwf) transformation is no longer unitary when
disentanglement is used.
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2 Computing the integrand

The optical conductivity σαβ(Ω) (in the general case a tensor with α, β ∈
{x, y, z}) at external frequency Ω may be written as an integral over k ∈ bz and
an internal frequency ω [Wis12],

σαβ(Ω) =
1
τ2

∫ +∞

−∞
dω w(ω; Ω)

∫
bz

dk T αβ(k, ω; Ω) (2)

where τ = 2π denotes the circle constant, i.e. the circumference of the unit circle
[Har10; Pal01];

w(ω; Ω) :=
f (ω)− f (ω + Ω)

Ω
(3)

is a weight factor; and the trace

T αβ(k, ω; Ω) := tr
{

A(k, ω)Vα(k) A(k, ω + Ω)Vβ(k)
}

(4)

becomes the central quantity in woptic. The purpose of this section is to explain
how T is computed in practice.

In (3), f (ω) = (1 + exp βω)−1 is the Fermi-Dirac distribution at inverse
temperature β (setting the Fermi level to 0),

A(k, ω) = i
τ
(G(k, ω)− G+(k, ω)) (5)

is the spectral function matrix, Vα(k) is the momentum matrix (1), and the trace
runs over orbitals and spin. To simplify the notation, we will usually suppress
the k-dependence, and adopt the following index conventions: a, b, . . . run over
all Bloch states; u, v, . . . over the Wannier states; n, m, . . . over Bloch states inside
and i, j, . . . over Bloch states outside of the Wannier window; α, β enumerate the
Cartesian directions; and repeated indices imply summation.

The dc conductivity and thermopower can be computed from very similar
expressions in the static limit, where

w(ω; Ω→ 0) =
β/4

(cosh βω/2)2 . (6)

To excite an electronic transition, the photon frequency Ω must connect an
empty state to a filled one, i.e. one of ω and ω + Ω must be negative and the
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other positive, which is enforced by the weight factor (3), modulo temperature
broadening. This observation can be exploited to limit the range of ω-integration.
Since the external frequency Ω ≥ 0, the internal frequency should satisfy

−(Ω + ∆ω) < ω < 0 + ∆ω, (7)

with ∆ω chosen according to temperature and desired accuracy. To include all
ω where w > ε, it suffices to set ∆ω according to the static limit (6),

cosh β ∆ω >

√
β

4ε
. (8)

This requirement is more stringent than w < ε would be for any finite Ω, though
for realistic values of the variables, the results are very similar.

For practical purposes, we will split (4) into parts inside the Bloch (ψψ) and
Wannier (ww) subspaces, and a mixed term (wψ):

T = Tψψ + Tww + Twψ. (9)

During the adaptive k-integration, these terms must be evaluated at arbitrary
k-points not necessarily contained in the k-mesh used for the Wannier projection.
As we will see establishing connection between the Bloch and Wannier states at
the extra k-points poses some challenges.

But first, the Bloch-only term,

Tψψ = Aii(ω)Vα
ij Ajj(ω + Ω)Vβ

ji , (10)

simplifies because the matrix spectral function is diagonal. It can be computed
using the noninteracting formula

Aii(k, ω) =
2δ/τ

(ω− εi(k) + µ)2 + δ2 , (11)

where δ is a broadening parameter (corresponding to a self-energy Σ = −iδ
with a small δ > 0). The momentum matrix elements Vα

ij are taken directly from
Wien2k’s optic module [as06].

Next, for the Wannier-only part,

Tww = Auv(ω)Vα
vr Ars(ω + Ω)Vβ

su, (12)
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we have to mediate between the spectral function, which will be given in the
Wannier gauge in terms of the dmft self-energy Σ(ω) via the Green function

G(k, ω) =
[
ω− Hw(k) + µ− Σ(ω)

]−1; (13)

and the momentum matrix elements, which optic computes in the Kohn-Sham
(ks) gauge. In our index convention,

Vα
uv(k) = 〈w uk| p̂α|w vk〉 = U+

un(k)Vα
nm(k)Umv(k). (14)

But if q is a new k-point not included in the original Wannier meshW , U (q)
is unknown. To determine U for new k-points, Wannier interpolation [Mar+12;
Yat+07] can be used in the following way [Wis12]: For each new k-point q /∈ W ,
the Wannier Hamiltonian

Hw
uv(k) = 〈w uk| Ĥks |w vk〉 = U+

un(k) εn(k)Unv(k) (15)

is interpolated to Hw(q), and the unitary matrix Ũ (q) which diagonalizes it is
taken as U (q).

With Vα
nm(q) calculated by optic and Σ(ω) k-independent, all the ingredients

are at hand to calculate Tww at q. This is the approach used in the original
woptic implementation [Wis12]. It is straightforwardly generalized to the mixed
term

Twψ = Auv(ω)Vα
vi Aii(ω + Ω)Vβ

iu + Aii(ω)Vα
iu Auv(ω + Ω)Vβ

vi . (16)

However, there is a subtler problem. Since the |ψ ak〉 arise from the diagonal-
ization of Ĥks(k), they carry complex phases ϕa(k) which a priori are completely
arbitrary. On the original k-points k ∈ W , the U (k) take into account and “can-
cel” these phases, yielding smooth functions |w vk〉 = Uiv(k) |ψ ik〉 of k; but
on added k-points q /∈ W , Ũ (q) has no such constraint, and the phases enter
into Twψ and Tww via the momentum matrix elements. (In Tψψ the phases cancel
because Vα

ij always appears paired with Vβ
ji .)
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2.1 Wannier-interpolating the momentum matrix elements

The solution to this “random-phase problem”* explored in the present work is
a direct Wannier interpolation of Vα(k). That is, Vα

nm(k) is computed by optic

on k ∈ W and transformed to the Wannier gauge (14). For all new k-points q,
Vα

uv(q) can be computed via Fourier interpolation,

Vα
uv(q) =

1
|W| ∑

R∈W
eiRq Vα

uv(q). (17)

Then, Tww can be computed completely in the Wannier gauge without recourse
to any new Ũ (q).

For this strategy to work,

Vα
uv(R) = 〈w u0| p̂α|w vR〉 (18)

must be well-localized in direct space, which should be the case as long as
well-localized wf can be found. This approach has been tested numerically for
the case of SrVO

3
.

First, the rapid decay of Vα
uv(R) with |R| is seen in Fig. 4. With exponentially

localized wf, we expect exponential decay ∼ e−|R|, consistent with the apparent
linear behavior in the semilogarithmic plot. Second, as long as the wf are real,
Vα

uv = 〈w uk| − i∂α|w vk〉 should be purely imaginary, as confirmed numeri-
cally in Fig. 5. Third, the Peierls approximation suggests that V(R) ≈ RHw(R),
as shown in Fig. 6.

These results already make a strong case for the Wannier interpolation method
as applied to Tww. In Sec. 3 we will see that this is validated also in the k-
integrated optical conductivity.

2.2 Interpolating the mixed momentum matrix elements

The mixed matrix elements Vα
vi = 〈w vk| p̂α|ψ ik〉 are not amenable to inter-

polation in the same way as Vα
uv(R) because Vα

vi(R) does not decay with |R|
(it does not in numerical tests, and neither is there much reason to believe it

* In crystal structures with inversion symmetry, it is a well-known and computationally exploited
fact that the ks vectors (more properly their basis coefficients and the necessary matrix
elements) can be chosen to be real. It is tempting to conclude that there is no random-phase
problem in these cases; however, the freedom to choose an arbitrary sign at each k-point,
ϕ(k) ∈ {0, τ/2}, remains.
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Figure 4: |Vα
uv(R)| for SrVO

3
as a function of |R| in units of the lattice constant. The

Wannier projection spans the O-p and V-d bands (p-14 above), and different Wannier-
ization k-meshes are compared. For each k-mesh, all the matrix elements (for all values
of u, v, and R) are plotted together. Denser meshes in reciprocal space correspond to
larger supercells in direct space, therefore they show a greater range and density of |R|
values. The linear plot (left) shows that the matrix elements are well converged already
at 73 k-points. In the semilogarithmic plot (right), the separation between signal and
numeric noise becomes evident. The magnitude of the noise decreases as the k-mesh
density increases. The signal roughly follows a straight line, consistent with exponential
localization.

should). Since the matrix elements appear in the trace in terms of the form
Vα

ui Aii(ω)Vβ
iv Avu(ω+Ω), two alternative targets for interpolation present them-

selves:

Sαβ
uiv(k) := Vα

ui ·V
β
iv = 〈w uk| p̂α|ψ ik〉 〈ψ ik| p̂β|w vk〉 (19)
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Figure 5: |Vα
uv(R)| as a function of the complex argu-

ment ϕ = arg Vα
uv(R). (Same data as Fig. 4.) As ex-

pected for real-valued wf, Vα
uv(R) is purely imaginary,

except for the numerical noise which has uniformly
distributed phases.

Figure 6: |Vα
uv(R)| compared to the Peierls expression

|RHw
uv(R)| (times a fitted constant) as a function of |R|.

In this case, a 3-band Wannier projection on 9× 9× 9 k-
points encompassing only the V-t2g bands (p-3 above)
was used, otherwise the positions of the wf within the
unit cell would have to be taken into account in the
Peierls approximation.
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(no summation implied) or

Wαβ
uv (k, ω) := Vα

ui Aii(k, ω)Vβ
iv

= 〈w uk| p̂α

(
∑

i
|ψ ik〉 Aii(k, ω) 〈ψ ik|

)
p̂β |w vk〉 ; (20)

in each case at the cost of dealing with a larger, more complicated, object.
Numerically, Sαβ

uiv(R) does not show decay with |R|, and we therefore discard
this approach.

There is some justification to expect

Wαβ
uv (R, ω) = Vuc

τ3

∫
bz

dk e−ikR Wαβ
uv (k, ω) (21)

to do better (the unit cell volume Vuc enters through the normalization fo the
Fourier transform). Denoting the operator p̂α(· · · ) p̂β above as B̂(k) and sup-
pressing the ω-dependence, we can write the Fourier transform as a convolution

Wαβ
uv (R) = ∑

R′R′′
〈w uR′|B̂(R + R′ − R′′)|w vR′′〉 . (22)

Thus, the properties of B̂(R) determine the degree of localization of Wαβ
uv (R).

To arrive at an expression analogous to (18), we must suppose that B̂(k) is
k-independent, and thus B̂(R) = δR,0B̂, which yields

Wαβ
uv (R) = ∑

R′
〈w uR′|B̂|w v R + R′〉 . (23)

In this case it is clear that Wαβ
uv will be localized in terms of R as long as B̂ is a suf-

ficiently local operator (i.e., 〈r′|B̂|r′′〉 is localized in terms of |r′ − r′′|). If further-
more B̂(R) is lattice-translation invariant (meaning that 〈r′ − R|B̂(R)|r′′ − R〉 ≡
〈r′|B̂(R)|r′′〉), we find, as desired,

Wαβ
uv (R) = 〈w u0|B̂|w vR〉 . (24)

Considering the actual form of B̂ (20), to get the simple case (24), we have
to assume that (a) the Bloch states i are “nearly complete”, and (b) Aii(k, ω) ≈
A(ω) is nearly constant in i and k. In this case,

∑
i
|ψ ik〉 Aii(ω) 〈ψ ik| ≈ A(ω)P̂(k), (25)
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Figure 7: Like Fig. 4, but for the mixed matrix elements Wαα
uv (R, ω = −2 eV) instead of

Vα
uv(R). At this frequency, a satisfactory (apparently exponential) decay with |R| is seen,

albeit slower than for |Vα(R)|. The Wannier projections are on the V-t2g bands (p-3
above), as in Fig. 6, and the outer (“Bloch”) window spans the O-p and V-eg bands.

where P̂(k) is the projector onto k and can be replaced by 1̂ =
∫

dk P̂(k) since
〈ψ ik| p̂α|w uk′〉 enforces k = k′ anyway. This yields

Wαβ
uv (R, ω) ≈ A(ω) 〈w u0| p̂α p̂β|w vR〉 . (26)

However, it is difficult to see how these conditions would be satisfied in a
real calculation; (a) means that 〈w uk| p̂α|w vk〉 ≈ 0, i.e. no w-w transitions are
allowed;* and (b) is only the case in energy regions without Bloch states, where
Aii = Wαβ

uv = 0. Otherwise the noninteracting spectral function is in fact a sum
over δ-peaks, Aii(k) = ∑j w(i)

j δ(k− x(i)j ).

Numerical tests for Wαβ
uv (R, ω) analogous to those for Vα

uv conclude this section
(Figs. 7 to 10). In this case the analysis is complicated by the extra dependence

* Strictly speaking, the requirement is ∑rs 〈w uk| p̂α|w rk〉 〈w sk| p̂β|w vk〉 ≈ 0.
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Figure 8: As Fig. 5, but for the mixed matrix elements
Wαα

uv (R, ω = −2 eV) instead of Vα
uv(R). (Same data

as Fig. 7.) A similar picture emerges for Wα 6=β (not
shown).

on ω, which turns out to be important, and the fact that Wαβ carries two coordi-
nate indices instead of one. Overall, Wαβ

uv (R, ω) shows significant localization.
Furthermore, it is essentially real, as we would expect in the simple scenario of
(26). The latter observation holds even where Wαβ

uv (R, ω) is not well localized.
In the face of the considerations above, both the localization and realness of
Wαβ

uv (R) are surprising, and an explanation remains as a topic for future study.
Results for the optical conductivity will be shown in Sec. 3. In this case as well,
we will see that the interpolation works acceptably well overall.

To begin, let α = β and the internal frequency ω = −2 eV, where Wαα
uv (R, ω)

is comparatively well behaved (Fig. 7). This corresponds to the top of the O-p
bands. Fig. 8 shows that Wαα

uv is essentially real. The situation is largely the
same for α 6= β (the off-diagonal terms of the optical conductivity), including
the magnitude of Wα 6=β

uv , even though these contributions must integrate to 0 in
σαβ(ω) for this cubic material (Fig. 9).

At ω = −4.5 eV (Fig. 10), corresponding to the center of the O-p bands, there
is still some decay, but it is not as pronounced. Note also that this coincides
with larger magnitudes of Wαβ

uv . The realness of Wαβ
uv (R) remains untouched by
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Figure 9: Like Fig. 7, but off-diagonal in the Cartesian indices, α 6= β.

this change (the phase plot as in Fig. 8 is similar at both frequencies, and hence
not shown for ω = −4.5 eV).

2.3 Interpolation and disentanglement

In the above description, it was implicit that the wf were constructed without
disentanglement. The basic difficulty was that we needed to mediate between
the “Bloch” and “Wannier” bases at k-points q where U (q) is not available.
This problem is addressed in woptic by interpolating either the transformation
matrices Ũ (q), or the momentum matrix elements Vα, Wα,β.

In the presence of disentanglement, we face a similar problem concerning
the projector matrices V(k) to the optimal subspace. Recall that the V(k) have
dimension Jk × J, where J is the number of wf and Jk the number of bands at
k, and satisfy

V+(k)V(k) = 1J×J . (27)
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Figure 10: Like Fig. 7, at internal frequency ω = −4.5 eV. Even though the localization
is lacking in this case, Wαβ is still essentially real-valued.

This section will explore strategies to overcome this obstacle. However, the
current version of woptic supports only the simplest special case including
disentanglement, namely when only w-w transitions are included, and those
are treated using Wannier interpolation.

General considerations

Disentanglement does not change the general structure of the problem. It is still
useful to partition the Hilbert space into inner and outer parts. This time, the
inner subspace will encompass all states that participate in the disentanglement;
it is what happens inside this part that becomes more complicated. For the
purposes of this discussion, upper case letters H, Σ, G, A refer to quantities in
the whole “Wannier+Bloch” space (the physical quantities, as it were); lower case
letters ε, g, a refer to their parts within or without the disentanglement window;
a superscript w indicates a quantity in the Wannier basis (with the disentangled
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states projected out); and a superscript ? indicates the same quantity promoted
to the whole disentanglement subspace (i.e., ·? = V U · U+V+, going from a
Jk ×Jk to a J × J matrix).

Let us write the diagonal ks Hamiltonian as

H =

ε′

ε

ε′′

 , (28)

where ε is the inner part of dimension Jk ×Jk, and the outer part is made up
of ε′ and ε′′. In order to introduce the J × J single-particle Hamiltonian used in
the many-body calculation,

Hw
uv = U+

unV+na εaVam Umv, (29)

into (28), we use the (Jk × Jk) projector onto the optimal subspace and its
complement within the disentanglement window,

P = V V+ and Q = 1− P, (30)
to write

ε = PεP + QεQ + PεQ + QεP, (31)
where

PεP = V UHwU+V+ = H? (32)

corresponds to Hw promoted to (Jk ×Jk).
We must now calculate the spectral function. The Green function

G = (ω− H − Σ)−1 =

g′0
g

g′′0

 (33)

inherits the block-diagonal form of the Hamiltonian, as does the spectral func-
tion

A =
i
τ
(G− G+) =

a′0
a

a′′0

 , (34)

where g0 and a0 stand for the noninteracting Green function and spectral
function (11) outside of the disentanglement window.
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In constructing the Green function, the self-energy Σw (J × J) derived from
the many-body calculation should be applied only to the Wannier (P) part of
the states. It must be promoted to Σ? (Jk ×Jk). For computational purposes, a
finite broadening (Σ← −iδ) will be imposed on all other states (Q, as well as
outside the disentanglement window).

Thus, the inverse of the inner-window Green function is

g−1 = ω1Jk − ε− Σ? + iδQ
= V U (ω1J − Hw − Σw)U+V+ + (ω + iδ)Q− (ε− PεP)

(35)

(since for a projector Q and a scalar c, Qc1Q = cQ). But due to the inversion,
neither the Green function itself nor the spectral function

a = − i
τ
(g− g+) (36)

admits a similar partitioning. Evidently, in the disentangled case, both U (q) and
V(q) are needed on the new k-points. Wannier interpolation of the momentum
matrix elements is not applicable.

Wannier-Wannier transitions only

Consider now the special case mentioned above, where we are interested only
in w-w transitions but disentanglement is necessary, e.g., to remove extraneous
states that interfere with the target states at the band edges, as in the p-14 for
SrVO

3
. Under these circumstances, Wannier interpolation can be salvaged in

the presence of disentanglement.
Namely, we can work entirely in the Wannier basis, where

Gw = (ω1J − Hw − Σw)−1 (37)
and

T = Tww = tr Aw(ω)V+U+Vα U VAw(ω + Ω)V+U+Vβ U V ; (38)

V+U+Vα U V = (Vα)w can be identified as the momentum matrix elements in
the Wannier basis and subjected to Wannier interpolation.

Interpolating V(k)

The interpolation method for Ũ (q) cannot be extended to the rectangular
V(q) (Jq × J), even disregarding any random-phase problem. To obtain in-
terpolated Ṽ , it seems most promising to extend the computational definition
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of V(k). The |ũ nk〉 are computed as the eigenvectors corresponding to the J
largest eigenvalues of the Jk×Jk matrix Z(k) with elements [Mar+12, Eq. (53)]

Zmn := 〈u mk|∑
b

gbPk+b|u nk〉 . (39)

The projector Pk = ∑r |ψ̃ rk〉 〈ψ̃ rk| =̂ V(k)V+(k) onto the optimal subspace is
the same as above. In the course of the normal disentanglement routine, this
equation is iterated, using the projector from the previous iteration to compute
the next Z until P and Z are consistent with each other.

If the optimally smooth subspace is known on a sufficiently fine k-mesh, (39)
can be reinterpreted to provide interpolated Ṽ . Let q /∈ W be a new k-point,
and b point to its neighbors on the original k-mesh, q + b ∈ W . Now we can
keep Pq+b fixed and use it as a boundary condition to compute Z(q) and hence
Ṽ(q).

Recall that the sum over b and weights gb stem from the finite-difference
formulas [Mos+08, Eqs. (8) and (9)]

∇ f (k) = ∑
b

gbb
[

f (k + b)− f (k)
]
+O(b2), (40)

|∇ f (k)|2 = ∑
b

gb
[

f (k + b)− f (k)
]2

+O(b3), (41)

where b is the k-mesh spacing. These expressions are valid under the condition
that [Mos+08, Eq. (26)]

∑
b

gb bαbβ = δαβ. (42)

Wannier90 ensures this in the following way: Add shells of neighbors with
increasing |b|. Compute the Nb weights by interpreting (42) as a linear system
of equations and solving for gb. Stop when (42) is satisfied.*

This procedure is applicable with little or no change also for an arbitrary
point q, and so it should be possible to construct interpolated Ṽ(q); however,
the random-phase problem will apply here, as well.

* For the linear system of equations to be solvable, it is sufficient but not necessary to have 6

linearly independent b vectors.
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3 Numerical results for the optical conductivity

The tests on the momentum matrix elements Vα(R) and Wαβ(R, ω) presented
in the preceding section are insightful precisely because they address the inter-
polated quantities directly. However, we have yet to address the bottom line:
how the observable, k-integrated, quantities are affected. The random-phase
problem in the case of U interpolation in particular can only be quantified in
this way. In this section, optical conductivities (including the dc conductivity as
the Ω→ 0 limit) computed using the different approaches will be compared.
SrVO

3
will be used as a testbed material throughout. A noninteracting model

and other limiting cases where certain sources of error are known to be absent
provide a basis for the analysis.

Unless noted otherwise, the Wannier projections were made on a 9× 9× 9
k-mesh, consequently Vα(R) and Wαβ(R, ω) were constructed on a 9× 9× 9
supercell. This size was chosen so that the quantities in the Wannier gauge are
relatively well converged, while the computational effort remains manageable. In
particular, the Wannier Hamiltonian is well converged on this mesh, as is Vα(R)
(cf. Fig. 6). Wαβ(R, ω) is reasonably well converged at favorable frequencies
(cf. Fig. 7) but perhaps less so at unfavorable ones (cf. Fig. 10). All results are
converged with respect to the integration k-mesh.

3.1 Noninteracting models

The noninteracting optical conductivity is an important test case, where “non-
interacting” means that only a small imaginary self-energy is added to the
Wien2k bands for broadening, Σ← −iδ. On the one hand, the random-phase
problem in the U interpolation approach is absent (by the same argument as
for the Tψψ term in (9), i.e., that the matrix spectral function is diagonal in the
Bloch basis). On the other hand, the woptic results can be directly compared to
Wien2k’s optic module.

Adaptively integrated results

Fig. 11 shows a comparison of the Wien2k result to four variants of woptic,
which ideally should all be identical:

(n1) Wien2k optic — black line and shaded,
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Figure 11: Noninteracting optical conductivity computed by Wien2k’s optic compared
with different variants of woptic. See text for details.
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Figure 12: Noninteracting optical conductivity computed from p-14 projections with and
without disentanglement. See text for details.
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(n2) p-3 projection with interpolated U (k) and matrix elements from optic —
purple line,

(n3) p-14 projection with interpolated U (k) and matrix elements from optic —
red line,

(n4) p-3 projection with interpolated momentum matrix elements Vα, Wαβ —
green line,

(n5) p-14 projection with interpolated momentum matrix elements Vα — blue
line.

Note that each woptic calculation takes into account the same 14 bands (O-p
and V-d); p-14 includes all of them as wf (i.e. there are only w-w transitions
in (n3) and (n5)), while p-3 includes only the V-t2g states as wf, and the other
states in the form of ψ-ψ and w-ψ transitions.

As a first observation, there is reasonable agreement between optic (n1) and
the woptic curves (n2), (n3), and (n5). Up to frequencies ∼ 4 eV, the curves
match well; for larger frequencies, deviations are expected because transitions
outside of the woptic window become relevant. The comparison of woptic to
optic has already been addressed previously [Ass+15; Wis12]; the remaining
differences can be attributed to temperature (the woptic calculations were
done at β = 40 eV−1 while optic works in the ground state) and the different
broadening schemes. In any case, the focus here is on the relative performance
of the momentum matrix element interpolation and U (k) interpolation.

Moreover, curves (n2), (n3), and (n5) are almost identical. This shows that
Wannier interpolation for the w-w transitions works well, and that the different
Wannier projections introduce no change in the optical conductivity. (Recall that
the raison d’être of the Vα and Wαβ interpolation, the random phase problem, is
absent in this noninteracting case.)

Conversely, curve (n4) clearly shows interpolation errors in the region where
w-ψ transitions are important (approximately 2 to 6 eV). We will have a closer
look at these errors in Fig. 13.

But first, to test the procedure for disentanglement taking into account w-w
transitions only as outlined in Sec. 2.3. Fig. 12 adds another:

(n6) p-14 with disentanglement and interpolated momentum matrix elements
Vα — dark blue line.
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The agreement of this curve with the others is within reasonable expectations.
The differences introduced by disentanglement are small and mostly contained
in a narrow region around ω ≈ 7 eV, corresponding to transitions around the
R-point (the only region where disentanglement is active, cf. Fig. 3). Since the
models with and without disentanglement represent slightly different physics,
they cannot be expected to yield identical results.

Contributions by subspace

The curves shown in Fig. 11 were calculated by converging woptic on an adap-
tive k-mesh. This has the advantage that it corresponds to the intended usage of
the code; the disadvantage is that, if there is disagreement between the different
modes, the adaptively refined k-meshes will likewise be different, which could
distort the intrinsic differences. Therefore, Fig. 13 shows the noninteracting
optical conductivity obtained with uniform refinement, separated into w-w,
w-ψ, and ψ-ψ contributions. For each contribution, two curves are shown, corre-
sponding to (n2) and (n4) above. The logarithmic scale serves to show all the
contributions in one plot, but since it may obscure the magnitude of disagree-
ment between the curves. the relative errors between the two approaches are
shown in a lower panel. Fig. 13 confirms that the divergence of (n4) from the
other curves in Fig. 11 is due to the w-ψ contribution. In particular, we see that
both the peak at ω ≈ 2 eV which (n4) misses almost entirely, and the second,
larger peak at ω ≈ 4 eV, which is shifted and distorted in (n4), are dominated
by mixed transitions.

3.2 Interacting models

A nontrivial self-energy Σ(ω) will now be added. The self-energy (shown in
Fig. 14) is taken from a dmft calculation using a 3-band model for SrVO

3

[Ass+15; Wis12]. For testing purposes it will also be applied to the d-orbitals
of the p-14 projections, even though this is unphysical. To discuss the different
woptic variants, let us use the following labels in analogy to the noninteracting
case:

(i2) p-3 model with interpolated U (k) and matrix elements from optic

(i3) p-14 model with interpolated U (k) and matrix elements from optic
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Figure 13: Contributions to the noninteracting optical conductivity on a uniform k-mesh,
using momentum matrix elements from optic (with interpolated U (k); exact in this
case), and from Vα(R), Wαβ(R, ω). The lower panel shows the relative errors of the w-w
and w-ψ contributions (note the different scales). The ψ-ψ contributions are identical by
design.
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Figure 14: dmft Self-energy of SrVO
3
,

Wick-rotated to the real axis using
maximum-entropy method (maxent)
[Ass+15; Wis12]. The model is derived
from a p-3 projection. Only the self-
energy for one band is shown since the
other two are identical within the un-
certainties of the method.

(i4) p-3 model with interpolated momentum matrix elements Vα, Wαβ

(i5) p-14 model with interpolated momentum matrix elements Vα

(i6) p-14 with disentanglement and interpolated momentum matrix elements
Vα

But note that (i2)/(i4) can no longer be expected to agree with (i3)/(i5), since
the orbitals to which the self-energy is applied have different character.

Fig. 15 shows the optical conductivity of the p-3 model, the exact curve (i2)
compared to (i4). Again, interpolation errors are clearly visible, albeit apparently
smaller than in the noninteracting case. The individual contributions, shown
in Fig. 16, reveal that this impression is somewhat misleading. In the region
where the mixed transitions are important, the error is in fact similar, but it is
masked by the w-w contribution, which is larger here than in the noninteracting
case. On the other hand, the small peak at ω ≈ 2 eV in the w-ψ contribution is
reproduced better in the interacting case.

Even with the ω-dependent self-energy included, the random-phase problem
has so far been absent. This is because in this cubic material, the self-energy is
orbital-independent (up to numerical accuracy from the quantum Monte Carlo
(qmc) and analytic continuation), and therefore the argument from the diagonal
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Figure 15: Optical conductivity for the interacting p-3 model computed on an adaptive
k-grid using matrix elements from optic (with interpolated U (k); exact in this case),
and interpolated matrix elements.

spectral function in the Bloch basis still holds. Therefore, we have been able
to use the results with momentum matrix elements from optic as a reference
against which the results from interpolated matrix elements could be compared.

Turning to p-14, this situation is reversed. Since we have satisfied ourselves
that the Wannier interpolation for Vα is accurate, and since no mixed transitions
are involved, we can rely on (i5) as a reference, while (i3) suffers from the
random-phase problem. These results are shown in Fig. 17. In comparison
with Fig. 15, the errors introduced by the random-phase problem and those
introduced by the Wαβ interpolation are similar in magnitude. The effect of
disentanglement on (i6) is quite similar to the noninteracting case (Fig. 12).

Using the original U(k)

Up to now, the only results for the interacting p-14 model that can be considered
reliable have come from matrix element interpolation (i5). For independent
confirmation, the original U (k) constructed by Wannier90 can be used together
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Figure 16: Like Fig. 13, but including a nontrivial self-energy.
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Figure 17: Optical conductivity for the interacting (unphysical) p-14 model computed
using matrix elements from optic (with interpolated U (k)), and interpolated matrix
elements (exact in this case), with and without disentanglement.
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Figure 18: Optical conductivity for the interacting p-14 model computed with the original
U (k) compared to the “standard” methods on the same k-grid. This calculation was
done on a 16× 16× 16 k-grid.
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with the momentum matrix elements on the same k-mesh, thus ensuring that
all the phases fit together. This approach is impractical for production usage
because only the Wannier k-mesh can be used, which is a severe restriction for
the optical conductivity; but as a test case, it will serve.

In Fig. 18, the curve

(i7) p-14 model with momentum matrix elements from optic and U (k) from
Wannier90 — orange dots.

is indistinguishable from the result obtained with Vα interpolation (i5). We
may conclude that the differences between (i3) and (i5) are indeed due to the
random-phase problem.

4 Discussion and outlook

woptic is an algorithm and program package to calculate optical conductivities
and related quantities from Wien2k+dmft calculations. With the relevant theory
and the adaptive k-integration already in place [Ass+15; Wis12], the remaining
obstacle was the random-phase problem that appeared because of the need to
interpolate the wf to k-points not included in the original Wannier k-mesh.

Wannier interpolation of the momentum matrix elements Vα
uv proved a reli-

able and practical solution as far as transitions within the Wannier subspace are
concerned. However, the generalization to Wannier-Bloch transitions is some-
what problematic. In the typical case where all bands that cross the Fermi level
are described by the wf, this means that the problem affects only the optical
conductivity, since for the static quantities (dc conductivity and thermopower),
only Wannier-Wannier transitions are relevant.

The random-phase problem is absent when the self-energy is orbital in-
dependent, either by symmetry or because there is no dmft self-energy (i.e.,
correlations are treated on the dft level). When this restriction is relaxed, the
numerical tests presented here indicate that errors from the phase problem and
from Wannier interpolation of the mixed transitions are comparable. In either
case, the important qualitative features of the optical conductivity are preserved.
In practical lda+dmft calculations, the errors must be seen with respect to
uncertainties stemming from the impurity solver and the analytic continuation
of the self-energy, which can easily be dominant.
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Finally, note that the random-phase problem is not caused by the adaptive
integration as such. For practical purposes, the k-mesh on which the optical
conductivity is integrated has to be finer than the Wannierization k-mesh, and
the matrix elements on additional k-points are required, be it on a uniform or
an adaptive grid. Also, the problem is not in principle limited to the optical
conductivity. Any quantity that depends on the phases of the wf (through some
matrix element Ouv(k) which is not paired with Ovu(k)) would be similarly
affected.

A complete solution to the random-phase problem would likely necessitate
moving away from mlwf, e.g. to projector wf [Ani+05; Ku+02], which are fast
to compute on arbitrary k-points (including disentanglement), or possibly the
recently proposed optimized projection function method [Mus+15].

Apart from that, potentially fruitful directions for future work on woptic

include

• Incorporating disentanglement in the general case. Currently, cases with
disentanglement are limited to Wannier-Wannier transitions as described
in Sec. 2.3. However, given our observations in Sec. 2.3, it is unclear how
this would be done.

• More straightforward is the generalization to a k-dependent self-energy
Σ(k, ω) (e.g. from a GW calculation). This requires no change in the
woptic formalism, only an interpolation of the self-energy to the new
k-points.

• In a more theoretical vein, it is unclear why the mixed momentum matrix
elements Wαβ are essentially real-valued and as localized as they are.
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